Thermal Release Transfer Printing for Stretchable Conformal Bioelectronics

نویسندگان

  • Zhuocheng Yan
  • Taisong Pan
  • Miaomiao Xue
  • Changyong Chen
  • Yan Cui
  • Guang Yao
  • Long Huang
  • Feiyi Liao
  • Wei Jing
  • Hulin Zhang
  • Min Gao
  • Daqing Guo
  • Yang Xia
  • Yuan Lin
چکیده

Soft neural electrode arrays that are mechanically matched between neural tissues and electrodes offer valuable opportunities for the development of disease diagnose and brain computer interface systems. Here, a thermal release transfer printing method for fabrication of stretchable bioelectronics, such as soft neural electrode arrays, is presented. Due to the large, switchable and irreversible change in adhesion strength of thermal release tape, a low-cost, easy-to-operate, and temperature-controlled transfer printing process can be achieved. The mechanism of this method is analyzed by experiments and fracture-mechanics models. Using the thermal release transfer printing method, a stretchable neural electrode array is fabricated by a sacrificial-layer-free process. The ability of the as-fabricated electrode array to conform different curvilinear surfaces is confirmed by experimental and theoretical studies. High-quality electrocorticography signals of anesthetized rat are collected with the as-fabricated electrode array, which proves good conformal interface between the electrodes and dura mater. The application of the as-fabricated electrode array on detecting the steady-state visual evoked potentials research is also demonstrated by in vivo experiments and the results are compared with those detected by stainless-steel screw electrodes.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

MHD Flow and Heat Transfer Analysis of Micropolar Fluid through a Porous Medium between Two Stretchable Disks Using Quasi-Linearization Method

In this paper, a comprehensive numerical study is presented for studying the MHD flow and heat transfer characteristics of non-Newtonian micropolar fluid through a porous medium between two stretchable porous disks. The system of governing equations is converted into coupled nonlinear ordinary ones through a similarity transformation, which is then solved using Quasi-linearization ...

متن کامل

A theoretical model of reversible adhesion in shape memory surface relief structures and its application in transfer printing

Transfer printing is an important and versatile tool for deterministic assembly and integration of micro/nanomaterials on unusual substrates, with promising applications in fabrication of stretchable and flexible electronics. The shape memory polymers (SMP) with triangular surface relief structures are introduced to achieve large, reversible adhesion, thereby with potential applications in temp...

متن کامل

Direct Transfer of Magnetic Sensor Devices to Elastomeric Supports for Stretchable Electronics

A novel fabrication method for stretchable magnetoresistive sensors is introduced, which allows the transfer of a complex microsensor systems prepared on common rigid donor substrates to prestretched elastomeric membranes in a single step. This direct transfer printing method boosts the fabrication potential of stretchable magnetoelectronics in terms of miniaturization and level of complexity, ...

متن کامل

Robust and stretchable indium gallium zinc oxide-based electronic textiles formed by cilia-assisted transfer printing

Electronic textile (e-textile) allows for high-end wearable electronic devices that provide easy access for carrying, handling and using. However, the related technology does not seem to be mature because the woven fabric hampers not only the device fabrication process directly on the complex surface but also the transfer printing of ultrathin planar electronic devices. Here we report an indire...

متن کامل

Micro-masonry for 3D additive micromanufacturing.

Transfer printing is a method to transfer solid micro/nanoscale materials (herein called 'inks') from a substrate where they are generated to a different substrate by utilizing elastomeric stamps. Transfer printing enables the integration of heterogeneous materials to fabricate unexampled structures or functional systems that are found in recent advanced devices such as flexible and stretchable...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 4  شماره 

صفحات  -

تاریخ انتشار 2017